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Abstract. The importance of Born terms and resonance exchange for η and η′ photoproduction off both the
proton and neutron within U(3) baryon chiral perturbation theory is investigated. Low-lying resonances
such as the vector mesons and JP = 1/2+, 1/2− baryon resonances are included explicitly and their
contributions together with the Born terms are calculated. The coupling constants of the resonances are
determined from strong and radiative decays. We obtain reasonable agreement with experimental data
near threshold.

PACS. 12.39.Fe Chiral Lagrangians – 13.60.Le Meson production

1 Introduction

Photoproduction of mesons is a tool to study baryon reso-
nances and the investigation of transitions between these
states provides a crucial test for hadron models. The dom-
inance of the ∆(1232) in the photoproduction of pions,
e.g., has allowed to extract information on its electro-
magnetic transition amplitudes. Because of their hadronic
decay modes nucleon resonances have large overlapping
widths, which makes it difficult to study individual states,
but selection rules in certain decay channels can reduce
the number of possible resonances. The isoscalars η and
η′ are such examples since, due to isospin conservation,
only the isospin- 1

2 excited states decay into the ηN and
η′N channels. In recent years both η and η′ photopro-
duction have been of considerable interest. The η pho-
toproduction of protons has been measured at MAMI
[1] and resonance parameters of the S11(1535)-resonance
and the electromagnetic coupling γp → S11 have been
extracted from the data. On the theoretical side, both
an effective Lagrangian approach [2] and coupled channel
models [3,4] are used to investigate η photoproduction in
the S11(1535)-resonance region. In these approaches the
coupling of the η to the nucleons is described by both a
pseudovector and a pseudoscalar term and the coupling
constant and the coupling structure of the Born terms is
unknown. In [4] it has been shown that differential cross-
sections are rather sensitive to the assumptions about
this vertex. But within the framework of chiral perturba-
tion theory this coupling is fixed at lowest order by mak-
ing use of the chiral SU(3)L × SU(3)R symmetry of the
Lagrangian, whereas explicitly chiral symmetry breaking
terms appear at higher orders. The SU(3)L×SU(3)R sym-
metric limit provides therefore a convenient starting point

which overcomes the problem of fixing the ηNN vertex.
The SU(3) chiral meson-baryon Lagrangian has been used
in a coupled channel model [5] and by adjusting a few pa-
rameters a large amount of low-energy data was described.
All the above-mentioned investigations have in common
that they treat the η-meson as a pure SU(3) octet state
η8 and mixing of η8 with the corresponding singlet state
η0 which yields the physical states η and η′ is neglected.

The η′ is interesting by itself. The QCD Lagrangian
with massless quarks exhibits an SU(3)L × SU(3)R chi-
ral symmetry which is broken down spontaneously to
SU(3)V , giving rise to a Goldstone boson octet of pseu-
doscalar mesons which become massless in the chiral
limit of zero quark masses. On the other hand, the axial
U(1) symmetry of the QCD Lagrangian is broken by the
anomaly. The corresponding pseudoscalar singlet would
otherwise have a mass comparable to the pion mass [6].
Such a particle is missing in the spectrum and the lightest
candidate would be the η′ with a mass of 958 MeV which
is considerably heavier than the octet states. In conven-
tional chiral perturbation theory the η′ is not included
explicitly, although it does show up in the form of a con-
tribution to a coupling coefficient of the Lagrangian, a
so-called low-energy constant (LEC).

The η′ photoproduction has been investigated theo-
retically both in [7] and [8]. In the effective Lagrangian
approach of [7] a pseudoscalar coupling of the η′ to the
nucleons was chosen and it was concluded that the η′N
decay channel is dominated by the not so well established
D13(2080)-resonance, whereas in the quark model used
in [8] the off-shell effects of the S11(1535) were prominent.
In contrast, the experimental data from ELSA [9] sug-
gested the coherent excitation of two resonances S11(1897)
and P11(1986). Recently, the η′ has been included in
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baryon chiral perturbation theory in a systematic fash-
ion. Within this framework it is possible to calculate the
importance of the S11(1535)-resonance for the η′N decay
channel without making any assumptions on the η′NN
coupling.

The aim of this paper is to clarify the role of Born
terms and low-lying resonances for both η and η′ pho-
toproduction within the framework of baryon chiral per-
turbation theory. The simultaneous description of η and
η′ photoproduction will also allow the inclusion of the η-
η′ mixing in a rigorous way. We restrict ourselves to the
threshold region and to the calculation of Born terms and
the leading resonances both in the t-channel and in the s-
and u-channels. Such a simplified treatment of η and η′
photoproduction will not allow us to reproduce all the ex-
perimental data in detail. Here, we are rather concerned
with qualitative agreement and a rough estimate of the
importance of low-lying resonances for both decay chan-
nels. In order to obtain a better description of the exper-
imental data, one has to include chiral loops and further
resonances, but this is beyond the scope of the present
investigation. This work should therefore be considered to
be mainly a check if the inclusion of η and η′ mesons in a
nonet of pseudoscalar mesons as proposed in [10] leads to
an adequate description for processes of η and η′ mesons
with baryons.

The η photoproduction off the neutron which has been
measured at ELSA [11] provides a further test of our sim-
ple model and we are able to give predictions for the
cross-sections for η′ photoproduction off the neutron. In
the next section, we present the necessary formalism for
photoproduction of η and η′ mesons. The effective chi-
ral Lagrangian including explicitly low-lying resonances is
given in sect. 3. The invariant amplitudes are shown in
sect. 4 and sect. 5 contains the numerical results. We con-
clude with a summary in sect. 6. The determination of the
baryon resonance couplings is relegated to the Appendix.

2 General Formalism

The T -matrix element for the processes N(p1) + γ(k) →
N(p2) + φ(q) with φ = η or η′ is given by

〈p2, q out|p1, k in〉 =

δfi + (2π)4iδ(4)(p2 + q − p1 − k)Tfi. (1)

The Mandelstam variables are

s = (k + p1)2 = (q + p2)2,
t = (k − q)2 = (p1 − p2)2,
u = (k − p2)2 = (q − p1)2, (2)

subject to the constraint s + t + u = 2M2
N + m2

φ
with MN and mφ being the mass of the nucleon and
the pseudoscalar meson, respectively. The invariant four-
momentum transfer squared, t, can be related to the scat-
tering angle ϑ in the c.m. system via

t = m2
φ − 2q0k0 + 2|q||k|z (3)

with z = cosϑ. The equivalent photon energy in the lab-
oratory system is given by

Eγ =
s−M2

N

2MN
, (4)

and the threshold values of s, t and Eγ are

sth = (MN + mφ)2,

tth = −
m2
φ

1 + mφ

MN

,

Eγ,th = mφ(1 +
mφ

2MN
). (5)

In the c.m. system, the differential cross-section is related
to T via

dσ
dΩcm

=
1

64π2s

λ1/2(s,M2
N ,m

2
φ)

s−M2
N

|Tfi|2

=
1

64π2s

|q|
|k| |Tfi|

2, (6)

with

λ(s,M2
N ,m

2
φ)=[s− (MN + mφ)2] [s− (MN −mφ)2], (7)

and our normalization is such that ūu = 2MN . In general,
T can be decomposed as

Tfi = iεµū2

8∑
i=1

BiN µ
i u1 (8)

with the invariant amplitudes

N 1
µ = γ5γµk/, N 2

µ = 2γ5Pµ, N 3
µ = 2γ5qµ,

N 5
µ = γ5γµ, N 6

µ = γ5k/Pµ, N 8
µ = γ5k/qµ, (9)

where we have neglected the operators B4 and B7 since
they vanish for real photons and we use P = 1

2 (p1 + p2).
From current conservation one obtains the relations

B3 = −1
2

s− u

s + u− 2M2
N

B2,

B5 = −1
4

(s− u)B6 −
1
2

[
s + u− 2M2

N

]
B8. (10)

It is therefore more convenient to define a set of indepen-
dent amplitudes [12]

Tfi = iū2

4∑
i=1

AiMiu1 (11)

with

M1 =
1
2
γ5γµγνF

µν ,

M2 = 2γ5PµqνF
µν ,

M3 = γ5γµqνF
µν ,

M4 = 2γ5γµPνF
µν − 2MNM1 (12)
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and Fµν = εµkν−ενkµ. The Ai obey the crossing relations

Ai(s, u) = Ai(u, s) i = 1, 2, 4
A3(s, u) = −A3(u, s) (13)

and are related to the Bi via

A1 = B1 −MNB6, A2 =
2

s + u− 2M2
N

B2,

A3 = −B8, A4 = −1
2
B6. (14)

The differential cross-section can be written in terms of
products of the Ai with their complex conjugates A∗

i

dσ
dΩcm

=
1

64π2s

λ1/2(s,M2
N ,m

2
φ)

s−M2
N

4∑
i,j=1

yijAiA
∗
j . (15)

The coefficients yij = yji read

y11 = [s−M2
N ][M2

N − u],

y12 =
1
2

[
t(su−M4

N + M2
Nm

2
φ) −M2

Nm
4
φ

]
,

y13 =
MN

2
[s− u][m2

φ − t],

y14 =
MN

2
[m2

φ − t]2,

y22 = −ty12,

y23 = y24 = 0,

y33 =
t

4
[2M4

N − 2M2
Nm

2
φ − s2 − u2] +

1
2
M2
Nm

4
φ,

y34 = − t

2MN
y13,

y44 = y33 −M2
N [m2

φ − t]2. (16)

The total cross-section is obtained by integrating over the
angular variable z = cosϑ

σtot(s) = 2π
∫ 1

−1

dz
dσ

dΩcm
(s, z). (17)

For the multipole decomposition one expresses the transi-
tion amplitude in terms of Pauli spinors and matrices

1
8π

√
s
iū2

4∑
i=1

AiMiu1 = χ†
2Fχ1. (18)

The most general form for F reads

F = iσ · εF1 + σ · q̂σ · (k̂ × ε)F2

+iσ · k̂ q̂ · εF3 + iσ · q̂ q̂ · εF4 (19)

and the Fi are related to the Ai via

F1 = (
√
s−MN )

N1N2

8π
√
s

×
[
A1 +

k · q√
s−MN

A3 +
(√

s−MN − k · q√
s−MN

)
A4

]
,

F2 = (
√
s−MN )

N1N2

8π
√
s

|q|
E2 + MN

×
[
−A1+

k · q√
s + MN

A3+
(√

s + MN − k · q√
s + MN

)
A4

]
,

F3 = (
√
s−MN )

N1N2

8π
√
s
|q| [−(

√
s−MN )A2 + A3 −A4] ,

F4 = (
√
s−MN )

N1N2

8π
√
s

× |q|2
E2 + MN

[(
√
s + MN )A2 + A3 −A4], (20)

with

Ni =
√

MN + Ei, Ei =
√

M2
N + p2

i . (21)

The projection matrix for the lowest multipoles E0+, M1+,
M1− and E1+ is given by


E0+

M1+

M1−
E1+


=

∫ 1

−1

dz




1
2P0 − 1

2P1 0 1
6 [P0 − P2]

1
4P1 − 1

4P2
1
12 [P2 − P0] 0

− 1
2P1

1
2P0

1
6 [P0 − P2] 0

1
4P1 − 1

4P2
1
12 [P0 − P2] 1

10 [P1 − P3]




×




F1

F2

F3

F4


 (22)

with Pi being the Legendre polynomials. Neglecting higher
partial waves the differential cross-section is given in terms
of E0+,M1+,M1− and E1+ by

|k|
|q|

dσ
dΩcm

= A + B cosϑ + C cos2 ϑ, (23)

with

A = |E0+|2 + |r|2,
B = 2Re(E0+M

∗
P ),

C = |MP |2 − |r|2,
MP = 3E1+ + M1+ −M1−,

2|r|2 = |3E1+ −M1+ + M1−|2 + |2M1+ + M1−|2. (24)

This completes the necessary formalism for the processes
considered in this paper.

3 The effective Lagrangian

In this section, we will introduce the effective Lagrangian
with η and η′ coupled both to the ground-state baryon
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octet and low-lying resonances in the s, u- and t-channel.
Recently, a systematic framework for the η′ in baryon chi-
ral perturbation theory has been developed [10]. Here, we
will extend this formalism by including explicitly the low-
lying meson and baryon resonances.

Our starting point is the U(3)L×U(3)R chiral effective
Lagrangian of the pseudoscalar meson nonet (π,K, η8, η0)
coupled to the ground-state baryon octet (N,Λ,Σ,Ξ) at
lowest-order in the derivative expansion

L = Lφ + LφB (25)

with

Lφ = −v0η
2
0 +

F 2
π

4
〈uµuµ〉 +

F 2
π

4
〈χ+〉

+ iF0v3η0〈χ−〉 +
1
12

(F 2
0 − F 2

π )〈uµ〉〈uµ〉 (26)

and

LφB = i〈B̄γµ[Dµ, B]〉 −MN 〈B̄B〉 − 1
2
D〈B̄γµγ5{uµ, B}〉

−1
2
F 〈B̄γµγ5[uµ, B]〉 − λ〈B̄γµγ5B〉〈uµ〉. (27)

The pseudoscalar meson nonet is summarized in a matrix
valued field U(x)

U(φ, η0) = u2(φ, η0) = exp{2iφ/Fπ + i

√
2
3
η0/F0}, (28)

where Fπ � 92.4 MeV is the pion decay constant and the
singlet η0 couples to the singlet axial current with strength
F0. The unimodular part of the field U(x) contains the
degrees of freedom of the Goldstone boson octet φ

φ =
1√
2




1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8


 , (29)

while the phase detU(x) = ei
√

6η0/F0 describes the η0.1 In
order to incorporate the baryons into the effective theory
it is convenient to form an object of axial-vector type with
one derivative

uµ = iu†∇µUu† (30)

with ∇µ being the covariant derivative of U . The expres-
sion 〈. . . 〉 denotes the trace in flavor space and the quark
mass matrix M = diag(mu,md,ms) enters in the combi-
nations

χ± = 2B0(uMu± u†Mu†) (31)

with B0 = −〈0|q̄q|0〉/F 2
π the order parameter of the spon-

taneous symmetry violation. Expanding the Lagrangian
Lφ in terms of the meson fields one observes terms
quadratic in the meson fields that contain the factor η0η8

1 For details the reader is referred to [10].

which leads to η0-η8 mixing. Such terms arise from the ex-
plicitly symmetry breaking terms F 2

π

4 〈χ+〉 + iF0v3η0〈χ−〉
and read

−
(2

√
2

3
Fπ
F0

+
8√
3
F0

Fπ
v3

)
B0(m̂−ms)η0η8 (32)

with m̂ = 1
2 (mu+md). The states η0 and η8 are therefore

not mass eigenstates. The mixing yields the eigenstates η
and η′,

|η〉 = cos θ |η8〉 − sin θ |η0〉,
|η′〉 = sin θ |η8〉 + cos θ |η0〉, (33)

which is valid in the leading order of flavor symme-
try breaking and we have neglected other pseudoscalar
isoscalar states which could mix with both η0 and η8. The
η-η′ mixing angle can be determined from the two photon
decays of π0, η, η′, which require a mixing angle around
−20◦ [13]. We will make use of this experimental input
in order to diagonalize the mass terms of the effective
mesonic Lagrangian.

The baryonic Lagrangian consists of the free kinetic
term and the axial-vector couplings of the mesons to the
baryons. The values of the LECs D and F can be extracted
from semileptonic hyperon decays. A fit to the experimen-
tal data delivers D = 0.80±0.01 and F = 0.46±0.01 [14].
We leave the third axial-vector coupling λ undetermined
for the time being. The covariant derivative of the baryon
field is given by

[Dµ, B] = ∂µB + [Γµ, B] (34)

with the chiral connection

Γµ � −ivµ = ieQAµ (35)

to the order we are working and Q = 1
3diag(2,−1,−1)

is the quark charge matrix. Note that there is no pseu-
doscalar coupling of η0 to the baryons of the form η0B̄γ5B.
Such a term is in principle possible but can be absorbed
by the λ-term in eq. (27) by means of the equation of
motion for the baryons. Since we confine ourselves to
the lowest-order Lagrangian for the ground-state baryon
octet, higher-order terms are omitted. The main purpose
here is to investigate the importance of lowest-order Born
terms and resonance exchange. In order to obtain an im-
proved description one must, of course, include higher-
order counterterms such as the anomalous magnetic mo-
ments of the nucleons.

We now proceed by including explicitly low-lying reso-
nances in our theory. In the t-channel the lowest-lying res-
onances are the nonet of the vector mesons (ρ,K∗, ω8, ω0).
According to [9] no evidence for ρ and ω exchange in the t-
channel is given. We will investigate this statement within
our framework. The vector mesons couple in a chiral in-
variant way to the baryons and the pseudoscalar mesons
via the Lagrangian

L = LV BB + LV γφ (36)
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with

LV BB = gDVBB〈B̄Γµ{V µ, B}〉
+gFV BB〈B̄Γµ[V µ, B]〉 + g0

V BBω
µ
0 〈B̄ΓµB〉, (37)

where the operator Γµ involves a vector and a tensor cou-
pling

Γµ = γµ + i
κV

2MN
σµν(p′ − p)ν . (38)

The electromagnetic piece of the Lagrangian is given by

LV γφ = −g8
V γφε

µναβ〈Vµ{uν , F+
αβ}〉

−g0
V γφε

µναβω0
µ〈uνF+

αβ〉. (39)

The quantity F+
αβ contains the electromagnetic field

strength tensor Fαβ of vµ

F+
αβ ≡ u†Fαβu + uFαβu

†

= 2(∂αvβ − ∂βvα) + O(φ2). (40)

The states ω8 and ω0 mix to yield the physical states ω
and φ. The mixing is characterized by the angle ϕ

|ω〉 = cosϕ |ω8〉 − sinϕ |ω0〉,
|φ〉 = sinϕ |ω8〉 + cosϕ |ω0〉 (41)

with ϕ � 40◦ [15]. The LECs of the effective Lagrangian
are usually expressed in terms of the physical couplings
gV N of ρ0, ω and φ to the proton

LV pp =
1
2
p̄Γµp

∑
V=ρ0,ω,φ

gV NV
µ. (42)

Comparison with the Lagrangian in eq. (37) leads to

gDVBB =
√

3
4
√

2

[√
3gρN − cosϕgωN − sinϕgφN

]
,

gFV BB =
√

3
4
√

2

[ 1√
3
gρN + cosϕgωN + sinϕgφN

]
,

g0
V BB =

1
2

[
cosϕgφN − sinϕgωN

]
. (43)

It follows immediately, that the coupling of ρ0, ω and φ to
the neutron is given by

LV nn =
1
2
n̄Γµn

(
− gρNρ

µ
0 + gωNω

µ + gφNφ
µ
)
. (44)

The couplings gV N are quite well known, we use gρN =
6.08 and gωN = 3gρN [16]. The gφN coupling turns out to
be much smaller than gωN [15] (in agreement with the OZI
suppression), so we can safely neglect the φ-meson in our
calculations by setting gφN = 0. Furthermore, the tensor
coupling for the ρ-meson is given by κρ = 6, whereas κω �
0. Instead of using a common tensor coupling κV for ρ and
ω, as prescribed by the Lagrangian in eq. (37), we prefer
to work with the physical values κρ = 6 and κω = 0.

We proceed in a similar manner with the electromag-
netic piece of the Lagrangian by defining the physical cou-
plings

LV γφ = e εµναβ∂αAβ
×

(
∂νη

∑
V=ρ0,ω,φ

gV γηVµ + ∂νη
′ ∑
V=ρ0,ω,φ

gV γη′Vµ

)
, (45)

which are related to the SU(3) couplings via

g8
V γφ =

[ 8√
3F0

sin θ − 4

√
2
3

1
Fπ

cos θ
]−1

gργη ,

g0
V γφ =

√
3Fπ

4 cos θ

[
sinϕgωγη − cosϕgφγη

]
. (46)

The experimental values for the gV γη can be extracted
from the decay width of radiative decays of the vector
mesons

Γ (V → ηγ) =
e2

96π
g2
V γη(mV −

m2
η

mV
)3. (47)

Using the values for Γ (ρ → ηγ) and Γ (ω → ηγ) from [13]
we obtain

gργη = 1.8 GeV−1 ,

gωγη = 0.23 GeV−1. (48)

Once the couplings of the vector mesons with η have been
determined, their coupling strength to η′ could in prin-
ciple be calculated by making use of the Lagrangian in
eq. (39). But in order to get a more accurate estimate
of these couplings, it is preferable to extract the coupling
constants gργη′ and gωγη′ directly from the decay widths
of the pertinent radiative decays

Γ (η′ → V γ) =
e2

32π
g2
V γη′(mη′ −

m2
V

mη′
)3. (49)

We obtain

gργη′ = 1.31 GeV−1,

gωγη′ = 0.45 GeV−1. (50)

This determines completely the contributions of the vec-
tor mesons. Note that the vector meson contribution is
usually reduced, e.g., by using a form factor [7]. However,
this effect should be reasonably small for η and η′ photo-
production close to threshold.

Baryon resonances contribute in the s- and u-channel.
In this work we consider the lowest-lying S- and P -wave
baryon resonances, i.e. the JP = 1/2+ and 1/2− octets
which include P11(1440) and S11(1535), respectively. We
will neglect higher-partial-waves baryon resonances such
as D13(1520). Both P11(1440) and S11(1535) contribute
to η photoproduction and experimentally dominance of
S11(1535) is found [1]. On the other hand, the situation for
η′ photoproduction is not so clear. It has been discussed
in the literature whether the data for η′ photoproduction
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on the proton can be understood by taking resonances in
the 2 GeV region or off-shell effects of S11(1535) into ac-
count [7,8]. In the present investigation we will extend the
formalism for the chiral U(3) Lagrangian presented in [10]
by including the JP = 1/2+ and 1/2− baryon resonance
octets. As we will see shortly, the parameters of such a La-
grangian can be fixed from strong and radiative decays of
the resonances. This allows us to predict the contributions
of P11(1440) and S11(1535) both for η and η′ photopro-
duction. Within our effective Lagrangian approach the re-
sults will be predictive and no additional parameters have
to be fitted to obtain agreement with experiment. There-
fore, the application of the U(3) formalism within baryon
chiral perturbation theory to photoproduction processes
is a highly nontrivial check of this method. It can also
clarify the importance of the S11(1535) resonance for η′
photoproduction. To this end, it is sufficient to obtain a
rough estimate for the resonance contributions. In order
to achieve better agreement with experiment, one has to
consider further resonances, e.g. D13(1520) and S11(1650),
and include chiral loop corrections. But this is beyond the
scope of the present investigation and the calculations are
performed at tree level.

Let us first consider the spin-1/2+ octet which we de-
note by P . The octet consists of N∗(1440), Σ∗(1660),
Λ∗(1600), Ξ∗(?) and the effective Lagrangian of the P -
wave octet coupled to the ground-state baryon octet takes
the form

L = LP + LφBP (51)

with the kinetic term

LP = i〈P̄ γµ[Dµ, P ]〉 −MP 〈P̄P 〉. (52)

Since for the processes considered here only N∗(1440) con-
tributes, we set MP = 1.44 GeV. The interaction terms
of the P -wave resonances with the ground-state baryon
octet read

LφBP = −1
2
DP 〈P̄ γµγ5{uµ, B}〉

−1
2
FP 〈P̄ γµγ5[uµ, B]〉 − λP 〈P̄ γµγ5B〉〈uµ〉

+dP 〈P̄ σµν{F+
µν , B}〉 + fP 〈P̄ σµν [F+

µν , B]〉 + h.c. (53)

A possible η0P̄ γ5B term can again be eliminated by us-
ing the equation of motion for baryons. The coupling
constants DP , FP and dP , fP can be determined from
strong and radiative decays of the N∗(1440)-resonance,
cf. Appendix A; we use the central values

DP = 0.32, FP = 0.16,
dP = −0.05 GeV−1, fP = 0.08 GeV−1. (54)

The spin-1/2− octet consists of N∗(1535), Λ∗(1670),
Σ∗(1750), Ξ∗(?) and the pertinent Lagrangian reads

L = LS + LφBS (55)

with the kinetic term

LS = i〈S̄γµ[Dµ, S]〉 −MS〈S̄S〉 (56)

Fig. 1. Shown are the Born terms for photoproduction on the
proton. The photon is given by a wavy line. Solid and dashed
lines denote proton and pseudoscalar mesons, respectively.

and the interaction part

LφBS = − i

2
DS〈S̄γµ{uµ, B}〉

− i

2
FS〈S̄γµ[uµ, B]〉 − iλS〈S̄γµB〉〈uµ〉

+idS〈S̄σµνγ5{F+
µν ,B}〉+ifS〈S̄σµνγ5[F+

µν ,B]〉+h.c. (57)

We set MS = 1.535 GeV and from strong and radia-
tive decays of the S-wave resonances one obtains, cf.
Appendix A,

DS = 0.37, FS = −0.21, λS = −0.07
dS = −0.07 GeV−1, fS = −0.06 GeV−1. (58)

Since there exists data on decay channels of the S-wave
resonances into η, we are able to fix the coupling λS by
taking η-η′ mixing into account, whereas for λP we rele-
gate the discussion to sect. 5. Several remarks are in order.
First, we would like to point out that our simple ansatz
of zero width resonances will lead to singularities at the
resonance mass which could be circumvented by the use of
a finite width. This will restrict in the case of η photopro-
duction the validity of our approach to energies very close
to threshold which we are considering in the present work,
whereas it is numerically irrelevant for η′ photoproduc-
tion. Furthermore, the couplings of the resonances to the
nucleons are determined by their pertinent decay widths.
Therefore, their sign is not fixed and a different choice of
their signs leads to changes in our results. We have cho-
sen the signs of the resonance couplings in such a way,
that they lead to better agreement with existing data for
η and η′ photoproduction and do not present the results
for the other possible values of the couplings. Finally, we
have calculated both Born terms using the lowest-order
chiral effective Lagrangian and resonance contributions.
We would like to emphasize that this procedure does not
imply any double counting. The contributions of the res-
onances are hidden only in higher chiral order countert-
erms of the effective Lagrangian which we did not take
into account in the present investigation. Born terms like
the ones used in this work are not produced by resonance
contributions.

4 Invariant amplitudes

We proceed by presenting the invariant amplitudes for η
and η′ photoproduction on the nucleons. Let us start with
the Born terms which vanish in the case of the neutron.
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Fig. 2. Vector meson exchange. The photon is given by a wavy
line. Solid and dashed lines denote nucleons and pseudoscalar
mesons, respectively. The double line represents the vector me-
son.

The diagrams contributing to photoproduction off the pro-
ton are depicted in fig. 1 and they read

A1(pγ → pφ) = −2MNeAφ

[ 1
s−M2

N

+
1

u−M2
N

]
,

A2(pγ → pφ) = 4MNeAφ
1

[s−M2
N ][u−M2

N ]
,

A3(pγ → pφ) = A4(pγ → pφ) = 0, (59)

with

Aη =
1

2
√

3Fπ
[D − 3F ] cos θ+

√
2
3

1
F0

[D + 3λ] sin θ,

Aη′ =
1

2
√

3Fπ
[D − 3F ] sin θ−

√
2
3

1
F0

[D + 3λ] cos θ. (60)

This leads to the total cross-section

σtot(pγ → pφ) = −
λ1/2(s,M2

N ,m
2
φ)

4πs[s−M2
N ]

M2
Ne

2A2
φ

×
(

1
2s

[3s−M2
N + m2

φ] −
4sm2

φ

[s−M2
N ]2

− 4s
∆φ

[1
2
−m2

φ

s+M2
N−m2

φ

[s−M2
N ]2

]
ln

[s+M2
N−m2

φ+∆φ

2
√
sMN

])
(61)

with

∆φ =
√

(s−M2
N + m2

φ)2 − 4sm2
φ. (62)

Vector meson exchange is shown in fig. 2. One has to
add the following terms to the invariant amplitudes for
photoproduction on the proton:

A1(pγ → pφ) =
eκρ

4MN
gρN gργφ

t

t−M2
ρ

,

A2(pγ → pφ) =
eκρ

4MN
gρN gργφ

1
t−M2

ρ

,

A3(pγ → pφ) = 0,

A4(pγ → pφ) = −e

2

∑
V=ρ0,ω,φ

gV N gV γφ
1

t−M2
V

. (63)

For the neutron gρN has to be replaced by −gρN .

Fig. 3. Baryon resonance contributions. The photon is given
by a wavy line. Solid and dashed lines denote nucleons and
pseudoscalar mesons, respectively. The double line represents
the baryon resonances P11(1440) or S11(1535).

We now turn to the baryon resonances. Their contri-
butions are given in fig. 3 and read for the spin-1/2+ octet
in the proton case

A1(pγ → pφ)=−e
4
3

(dP +3fP )Pφ
[u−M2

N

u−M2
P

+
s−M2

N

s−M2
P

]
.

A2(pγ → pφ) = 0,

A3(pγ → pφ) =

e
4
3

(dP + 3fP )Pφ(MP + MN )
[ 1
s−M2

P

− 1
u−M2

P

]
,

A4(pγ → pφ) =

e
4
3

(dP + 3fP )Pφ(MP + MN )
[ 1
s−M2

P

+
1

u−M2
P

]
(64)

with

Pη =
1

2
√

3Fπ
[DP − 3FP ] cos θ+

√
2
3

1
F0

[DP + 3λP ] sin θ,

Pη′ =
1

2
√

3Fπ
[DP − 3FP ] sin θ−

√
2
3

1
F0

[DP + 3λP ] cos θ,

(65)

whereas the results for the neutron are obtained by replac-
ing dP + 3fP by −2dP in eq. (64). The contributions from
the spin-1/2− resonances read in the case of the proton

A1(pγ → pφ) = e
4
3

(dS + 3fS)Sφ
[u−M2

N

u−M2
S

+
s−M2

N

s−M2
S

]
,

A2(pγ → pφ) = 0,

A3(pγ → pφ) =

e
4
3

(dS + 3fS)Sφ(MS −MN )
[ 1
s−M2

S

− 1
u−M2

S

]
,

A4(pγ → pφ) =

e
4
3

(dS + 3fS)Sφ(MS −MN )
[ 1
s−M2

S

+
1

u−M2
S

]
(66)

with

Sη =
1

2
√

3Fπ
[DS − 3FS ] cos θ +

√
2
3

1
F0

[DS + 3λS ] sin θ,

Sη′ =
1

2
√

3Fπ
[DS − 3FS ] sin θ −

√
2
3

1
F0

[DS + 3λS ] cos θ,

(67)
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Fig. 4. Total cross-sections for γp → pη (a), γp → pη′ (b), γn → nη (c) and γn → nη′ (d). The dashed lines denote the
contributions from the Born terms, the full lines are our results including the resonances. The reaction γp → pη in (a) is
compared with data from [1]. We do not show data from [9] for η′ photoproduction since the energy bins of this experiment are
100 and 200 MeV wide.

where for neutrons dS + 3fS in eq. (66) has to be replaced
by −2dS .

5 Numerical results

In this section, we discuss the numerical results for the
central values of the resonance couplings as given in sect.
3. We were able to determine most LECs by using experi-
mental data from both semileptonic decays of the ground-
state baryon octet and from strong and radiative decays
of the baryon resonances. The coupling constants of the
vector meson Lagrangian are quite well known. The only
parameters not fixed so far are the couplings λ and λP
of the axial flavor-singlet baryonic currents. We note that
from large Nc counting rules, one expects |λ| < |D|, |F |
and |λP | < |DP |, |FP |. In order to get an estimate of these
couplings, we therefore varied their values within a small
range around zero. It turns out that the dependence on λP

is almost negligible and one can safely set λP = 0. Varia-
tion of λ leads to some smaller changes in the results and
we find improved agreement with experiment for λ = 0.05.
Of course, we could achieve better agreement with exper-
iment by fine-tuning all parameters, but here we are only
interested in a rough estimate of the resonance contribu-
tions. For F0 we employ the large-Nc identity F0 = Fπ.
Once the parameters are determined, the resonance con-
tributions are fixed both for η and η′ photoproduction.
This will particularly clarify the importance of low-lying
resonances for η′ photoproduction within the chiral U(3)
Lagrangian approach presented in this paper, since our
results are predictions rather than a fit to experimental
data. It also serves as a check if the η′ can in general be
included in baryon chiral perturbation theory in a system-
atic fashion as proposed in [10].

In fig. 4 we present the total cross-sections obtained
from our tree level model. We restrict ourselves to the
threshold region, since chiral loop effects and contribu-
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Fig. 5. a) Differential cross-section of γp → pη for the photon
energy Eγ = 716 MeV which is compared with the data from
[1]. b) Differential cross-section for γp → pη′ at Eγ = 1.45
GeV. The data are the energy-integrated angular distributions
for 1.44 GeV < Eγ < 1.54 GeV [9].

tions from further resonances will become more important
with increasing c.m. energy s. We are able to achieve rea-
sonable agreement with existing data. However, the energy
bins of the experiment for η′ photoproduction on the pro-
ton are 100 MeV and 200 MeV wide [9] and can therefore
not be compared directly with our theoretical estimates.
But we obtain a total cross-section for η′ photoproduc-
tion which is in the same order of magnitude as in the
experiment, i.e. � 1.5 µb. In particular, η′ photoproduc-
tion close to threshold can be understood without taking
any further resonances into account. The dashed lines in
fig. 4 are the contributions from the Born terms without
the inclusion of resonances. Obviously, the resonances con-
sidered in this model lead to sizeable contributions except
for η′ photoproduction on the proton in which case the
sum of their contributions is almost negligible. Further-
more, we are able to reproduce the ratio of η photopro-
duction on the neutron and the proton, which is exper-

Table 1. Given are the multipoles for η photoproduction off
the proton at c.m. energy s = 708 MeV both with and without
resonances in units of 10−3/mπ+ . The first row denotes the
contributions from only the Born terms. In the following rows
we have added vector mesons, spin-1/2+ and spin-1/2− baryon
resonances, respectively. The last row gives our final result,
including all resonances considered in this work.

E0+ M1+ M1− E1+

N −4.47 0.073 −0.10 0.009
N, V 2.48 0.084 0.27 −0.006
N, P11 −4.40 0.079 −0.32 0.009
N, S11 6.36 0.076 −0.09 0.008

N, V, P11, S11 13.39 0.092 0.06 −0.007

imentally found to be 2/3 [11]. It is also worthwhile to
compare our results for the differential cross-sections with
experimental data. In fig. 5 we show the differential cross-
sections for η and η′ photoproduction on the proton close
to threshold. The data for η′ photoproduction as shown
in fig. 5b) is the energy-integrated angular distribution for
1.44 GeV < Eγ < 1.54 GeV. Dividing by the phase space
factor |q|/|k| in eq. (6) in order to account for the wide
energy bin one obtains experimental data which have a
slightly smaller differential cross-section than obtained in
our model. This might indicate that we overestimated the
resonances, e.g., by not using a form factor for the vector
mesons. Nevertheless, our simplified treatment of η and η′
photoproduction shows, that one is able to understand the
size of experimental data just by considering lowest-order
Born terms and resonance exchange.

In figs. 6 and 7 we present the results for the multipoles
E0+,M1+,M1− and E1+ in the threshold region. In order
to estimate the significance of the different resonances,
we show in table 1 the multipoles for η photoproduction
off the proton at c.m. energy s = 708 MeV both with and
without resonances. We conclude that while the spin-1/2+

resonance octet does not contribute significantly, both vec-
tor mesons and spin-1/2− octet lead to sizeable contribu-
tions. For completeness we present the energy dependence
of the coefficients A,B and C from eq. (23) in figs. 8 and 9.

6 Summary

In the present work, we studied η and η′ photoproduc-
tion on both the proton and neutron. To this end, we
pinned down an effective chiral U(3) Lagrangian which
describes the interactions of the pseudoscalar meson nonet
(π,K, η, η′) with the ground-state baryon octet and low-
lying resonances. These include the vector mesons ρ0 and
ω in the t-channel (the φ-meson leads to much smaller
contributions and can be neglected for our purposes), and
the JP = 1/2+ and 1/2− baryon resonances P11(1440)
and S11(1535). Our aim here is to obtain a rough esti-
mate of the contributions of these low-lying resonances
both for η and η′ photoproduction. Further resonances
have therefore been neglected, such as S11(1650) and the
higher-partial-wave resonance D13(1520).
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Fig. 6. Shown are the multipoles E0+ (a), M1+ (b), M1− (c) and E1+ (d) for η photoproduction off the nucleons. The full and
dashed lines denote γp → pη and γn → nη, respectively.

Most LECs of the effective Lagrangian can be deter-
mined using semileptonic hyperon decays and both strong
and radiative decays of the baryon resonances. The cou-
plings of the vector mesons are also quite well known.
Only the couplings of the axial flavor-singlet currents of
the ground-state and spin-1/2+ resonance baryons, λ and
λP , could not be fixed from experiment. Variation of both
parameters within a realistic range revealed that λP does
almost not alter our results and is therefore set to zero.
For λ we have chosen a value which leads to improved
agreement with experiment. Our results are therefore pre-
dictions rather than fits to experiment.

We calculated the Born terms and the resonance con-
tributions to η and η′ photoproduction on the nucleons
using the chiral U(3) Lagrangian. Comparison with data
close to threshold shows that this simple model is capable
of producing simultaneously reasonable agreement with η
and η′ photoproduction both on the neutron and proton,
i.e. the size of the experimental data for photoproduction
of the η′-meson can be understood just by taking low-
lying resonances into account. Of course, we do not ex-
pect our model to be valid for higher c.m. energies away

from threshold, since other effects such as contributions
from further resonances and chiral loop corrections will
become significant. We are able to reproduce the ratio of
η photoproduction on the neutron and the proton, which is
experimentally found to be 2/3 [1]. Reasonable agreement
with experiment is also obtained for the differential cross-
sections, which is almost constant for η photoproduction
and forward-peaked in the case of η′. Finally, we present
results for the multipole decomposition of η photoproduc-
tion. Within our model, we find, that contributions from
vector mesons and S11(1535) dominate, whereas contribu-
tions from P11(1440) lead to some minor corrections.

The present investigation also served as a check if the
η′-meson can be included in baryon chiral perturbation
theory as proposed in [10]. The findings of the present
investigation concerning η′ photoproduction can be con-
firmed, e.g., by employing the chiral U(3) meson-baryon
Lagrangian without explicit resonances in a coupled chan-
nel approach. This will generate dynamically the baryon
resonances as was shown in [5] for η photoproduction.
Work on this subject is currently underway.
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Appendix A. Determination of the baryon
resonance couplings

In order to determine the strong coupling constants of the
baryon resonances, we use the decays N∗(1440) → Nπ,
Λ∗(1600) → Σπ and N∗(1535) → Nπ , N∗(1535) → Nη,
Λ∗(1670) → Λη, see also [17]. The width follows via

Γ =
1

8πM2
R

|qφ||T |2 (A.1)

with

|qφ| =
1

2MR

×
[
(M2

R − (MB + mφ)2) (M2
R − (MB −mφ)2)

]1/2

, (A.2)

being the three-momentum of the meson φ = π, η in
the rest frame of the resonance. The terms MR and MB

are the masses of the resonance and the ground-state
baryon, respectively. We employ the physical masses of
the baryons involved in a decay. The mistake we make in
not using common octet masses is of higher chiral order
and, therefore, beyond the accuracy of our calculation. For
the transition matrix one obtains in the case of P -wave
resonances

|T |2 =
1

2F 2
π

(MR + MB)2

×
[
(MR −MB)2 −m2

φ

]
APφ, (A.3)

and for the S-waves

|T |2 =
1

2F 2
π

(MR −MB)2

×
[
(MR + MB)2 −m2

φ

]
ASφ,

(A.4)
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Fig. 8. Energy dependence of the coefficients A (a), B (b), C
(c) from eq. (23) for η photoproduction. The full and dashed
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with the coefficients

AN∗(1440)π =
3
2

(DP + FP )2, AΛ∗(1600)π = 2D2
P ,

AN∗(1535)π =
3
2

(DS + FS)2,

AN∗(1535) η =
1
6

[
(DS − 3FS) cos θ +

√
8
Fπ
F0

(DS + 3λS) sin θ
]2

,

AΛ∗(1670) η =
2
3

[
DS cos θ +

√
2
Fπ
F0

(DS + 3λS) sin θ
]2

,

(A.5)

where we have taken η-η′ mixing into account. For F0 we
employ the large Nc value F0 = Fπ. Using the experimen-
tal values for the decay widths we arrive at the central
values

DP = 0.32, FP = 0.16,
DS = 0.37, FS = −0.21, λS = −0.07, (A.6)

where we have chosen the signs in accordance with the
data for η and η′ photoproduction. We do not present
the uncertainties in these parameters here, since for the
purpose of our considerations a rough estimate of these
constants is sufficient.

We now turn to the determination of the couplings
dP , fP and dS , fS appearing in the electromagnetic part
of the effective resonance ground-state Lagrangian. The
decays listed in the particle data book, which determine
the coupling constants dS and fS , are N∗(1535) → Nγ,
see also [18]. The width is given by

Γ ji =
1

8πM2
S

|kγ ||T ji|2, (A.7)

with

|kγ | = Eγ =
1

2MS
(M2

S −M2
B), (A.8)

being the three-momentum of the photon in the rest frame
of the resonance. For the transition matrix one obtains

|T ji|2 = 128 e2 (pi · k)2 (Cji)2 (A.9)

with pi the momentum of the decaying baryon and the
coefficients

Cp
∗(1535) p =

1
3
dS + fS , Cn

∗(1535)n = −2
3
dS .(A.10)

Using the experimental values for the decay widths we
arrive at the central values

dS = −0.07 GeV−1, fS = −0.06 GeV−1. (A.11)

For the determination of dP and fP we use the decays
N∗(1440) → Nγ. One has to replace the resonance mass
by MP � 1440 MeV in eq. (A.7,A.8) and the coefficients
read

Cp
∗(1440) p =

1
3
dP + fP , Cn

∗(1440)n = −2
3
dP . (A.12)

The fit to the decay widths delivers

dP = −0.05 GeV−1, fP = 0.08 GeV−1. (A.13)
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